Annals of Indian Academy of Neurology
  Users Online: 28 Home | About the Journal | InstructionsCurrent Issue | Back IssuesLogin      Print this page Email this page  Small font size Default font size Increase font size


 
Table of Contents
ORIGINAL ARTICLE
Year : 2010  |  Volume : 13  |  Issue : 4  |  Page : 284-288
 

Normobaric oxygen therapy in acute ischemic stroke: A pilot study in Indian patients


1 Department of Neurology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India
2 Department of Neuroradiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India

Date of Submission30-Jun-2010
Date of Decision25-Jul-2010
Date of Acceptance09-Aug-2010
Date of Web Publication24-Dec-2010

Correspondence Address:
M V Padma
Department of Neurology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029
India
Login to access the Email id


DOI: 10.4103/0972-2327.74203

PMID: 21264137

Get Permissions

 

   Abstract 

Purpose: Clinical and radiological assessment of effects of normobaric high-flow oxygen therapy in patients with acute ischemic stroke (AIS). Materials and Methods: Patients with anterior circulation ischemic strokes presenting within 12 h of onset, ineligible for intravenous thrombolysis, an National Institute of Health Stroke Scale (NIHSS) score of >4, a mean transit time (MTT) lesion larger than diffusion-weighted image (DWI) (perfusiondiffusion mismatch), and an evidence of cortical hypoperfusion on magnetic resonance imaging (MRI) were included into the trial. Active chronic obstructive pulmonary disease (COPD), requirement of >3/L min oxygen delivery to maintain SaO2 > 95%, rapidly improving neurological deficits, pregnancy, contraindications to MRI, or unstable medical conditions were excluded. The experimental group received humidified oxygen at flow rates of 10 L/min for 12 h. The NIHSS, modified Rankin Score (mRS), Barthel Index (BI) were measured at 0, 1, 7 day of admission and at 3 months follow-up. MRI with DWI/PWI was performed at admission, 24 h later and at 3 months follow-up. Results: Of 40 patients (mean age = 55.8 years ± 13.2) (range, 26-82), 20 patients were randomized to normobaric oxygen (NBO). The mean NIHSS in NBO and control groups were 14.25 and 12.7 at admission which decreased to 11.6 and 9.5 on the seventh day, and 9.4 and 9.05 at 3 months, respectively. The mean mRS (3.7/3.7) and BI (58.2/53.9) in NBO and control groups improved to 2/2.2 and 73.05/73.8 at the end of 3 months, respectively. Conclusions: NBO did not improve the clinical scores of stroke outcome in Indian patients with AIS.


Keywords: Acute ischemic stroke, neuroprotection, normobaric oxygen


How to cite this article:
Padma M V, Bhasin A, Bhatia R, Garg A, Singh M B, Tripathi M, Prasad K. Normobaric oxygen therapy in acute ischemic stroke: A pilot study in Indian patients. Ann Indian Acad Neurol 2010;13:284-8

How to cite this URL:
Padma M V, Bhasin A, Bhatia R, Garg A, Singh M B, Tripathi M, Prasad K. Normobaric oxygen therapy in acute ischemic stroke: A pilot study in Indian patients. Ann Indian Acad Neurol [serial online] 2010 [cited 2014 Oct 31];13:284-8. Available from: http://www.annalsofian.org/text.asp?2010/13/4/284/74203



   Introduction Top


The impact of stroke burden in Indian population is tremendous and cannot be overemphasized. Most effective treatments of acute ischemic stroke (AIS) are time-dependent and confine to less than 6 h of stroke onset. World over, modalities to expand the therapeutic time window to enable stroke victims to reach centers where comprehensive stroke treatment can be given is under active investigation. Having a simple technique which can be administered with ease by paramedics or peripheral and secondary care hospitals to "buy time" and arrest the transition of "ischemia" to "infarct", facilitating transfer to stroke centers for definitive treatment will help improve stroke outcomes. One such potential intervention is normobaric oxygen (NBO) administration.

The results of several recent animal studies have shown that hyperoxia improves pathological, neurobehavioral, and neuroimaging outcomes after stroke. [1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15],[16],[17],[18] NBO therapy administered during ischemia and in the immediate postreperfusion period resulted in a 70% reduction in hemispheric infarct volumes; and could extend the "reperfusion time window" from 1 h to 3 h. [14],[15],[16] In a recent pilot trial, NBO-treated patients showed improvement in National Institute of Health Stroke Scale (NIHSS) scores, reduced growth of diffusion-weighted image (DWI) lesion volumes and an increase in the volume of "penumbral" tissue while therapy was being administered. [19],[20] In light of these data, NBO might, therefore, be a useful strategy as a neuroprotectant in AIS. A randomized controlled trial was undertaken to study the role of NBO in AIS in Indian patients.


   Materials and Methods Top


A randomized placebo-controlled study was undertaken with approval of the Institutional Ethics Committee. The inclusion criteria were anterior circulation ischemic stroke presenting within 12 h of stroke onset ineligible for thrombolysis, minimum NIHSS score of ≥4. The exclusion criteria were active chronic obstructive airway disease, patients requiring >2 L/min of oxygen to maintain peripheral arterial oxygen saturation (SaO 2 ) > 95%, NIHSS < 4, medically unstable, pregnancy and contraindication to magnetic resonance imaging (MRI). Eligible patients who gave consent were randomized to experimental and control groups.

Block randomization was done with equal allocation of the number in both the groups. NIHSS, modified Rankin Score (mRS), and modified Barthel Index (BI) were recorded after admission, and repeated at the end of 24 h, 7 days, and 3 months. A DWI and perfusion-weighted image (PWI) on MRI was taken at baseline, 24 h and at 3 months wherever feasible. Manual MRI analysis was performed by the neuroradiologist blinded to clinical presentation, treatment group, clinical course, and medications. Stroke volumes were calculated from DWI images. Lesions were outlined on each axial slice using a commercially available image analysis program (ALICE; Perceptive Informatics, Waltham, Mass), to yield total volumes. Postischemic hemorrhage was ascertained on 24-h gradient-echo MRIs. An unblinded clinical investigator monitored patients during therapy.

Statistical analysis

Statistical analysis was done through SPSS for Windows version 11. For intergroup comparisons, we applied the Student t-test, Mann-Whitney U-test, or Fisher exact test for intragroup comparisons, we applied the paired t-test or Wilcoxon rank-sum test as appropriate with P < 0.05 was considered significant. Repeated measures ANOVA was used to find out the differences intragroup at time points.

Intervention

The experimental group was given humidified oxygen via a simple face mask at flow rates of 10 L/min for 12 h. The control group was kept under room air or oxygen at 2 L/min via a simple face mask to maintain SaO 2 ≥ 95%.


   Results Top


Forty patients (mean age = 55.8 ± 13.2 years) (range, 26-82) completed the study. Twenty patients were randomized in each group. The mean time to randomization for the treatment was 8.5 ± 2.2 h. The mean NIHSS and mRS scores in both the groups remained comparable, both at the base line, at the end of 24 h, 1 week, and at 3 months follow-up. None of the patients reported any adverse effects of the treatment given. The standard treatment of stroke as per guidelines continued in all. Two patients expired in the control group which was unrelated to the treatment (arrhythmia and cardiac arrest and aspiration pneumonia). The deaths were notified to the Ethics Committee.

There was a significant decrease in NIHSS score from day 0 to day 1 and day 7 to follow-up [Figure 1] in the patients administered with NBO with P = 0.002 and P = 0.0002, respectively. A similar decrease was also observed in the control group subjects [Figure 2] with P = 0.002 and P = 0.001, respectively. A trend in improvement was also observed in the mRS and BI in both the groups.
Figure 1: Mean National Institute of Health Stroke Scale score to different time points in experimental group

Click here to view
Figure 2: Mean National Institute of Health Stroke Scale score to different time points in control group

Click here to view


On comparison of the mean of NIHSS between the two groups [Figure 3], no significant difference was observed at day 0, day 1, and at follow-up. At day 7, the mean NIHSS score was higher in the experimental group as compared to control group with a significant P = 0.04 (P < 0.05). The other two stroke scales, mRS and BI, also did not show any significant improvements at all time points [Figure 4] and [Figure 5]. There was no statistically significant difference in the lesion volume between the two groups, although there was a trend toward lesser DWI lesion volume in the experimental group [Figure 6].
Figure 3: Mean NIHSS score of experimental and control group at day 0, day 1 ,day 7, and at 3 months (black bar: experimental group, white bar: control group)

Click here to view
Figure 4: Mean modified Rankin score (mRS) at day 0, day 1, day 7, and at 3 months in experimental and control groups (black bar: experimental group, gray bar: control group)

Click here to view
Figure 5: Mean modified Barthel index at 0 day, day 1, day 7, and at 3 months in experimental and control groups (black bar: experimental group, gray bar: control group)

Click here to view
Figure 6: Mean DWI lesion volumes at day 0, day 1, day 7, and at 3 months in experimental and control groups (black bar: experimental group, white bar: control group)

Click here to view



   Discussion Top


Oxygen has multiple beneficial biochemical, molecular, and hemodynamic effects. Hyperoxia might be a useful physiological therapy that slows down the process of infarction and has shown promise in studies of myocardial infarction. Recent studies indicate that brain ptiO 2 increases linearly with rising concentrations of inspired oxygen and increase nearly fourfold over baseline have been documented in brain trauma patients treated with NBO. [17],[20] Since tissue hypoxia is a critical factor in ischemic cell death, there has been a long-standing interest in increasing brain oxygenation to treat stroke.

Hyperbaric oxygen therapy (HBO) has been widely studied because it is the most effective method to increase brain oxygenation. [1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13] HBO in a pressure chamber dramatically increases the oxygen content of blood by physically dissolving oxygen. The increased oxygen content in blood is then released passively in ischemic areas. Numerous animal studies of ischemic stroke have shown HBO therapy at pressures ranging from 1.5 to 3 ATA to be beneficial. However, failure of three small clinical trials combined with the logistic difficulties with HBO chambers, poor patient tolerance, adverse effects of HBO, difficulties of administering HBO with thrombolysis, dampened the enthusiasm of using HBO in AIS. [21],[22],[23] A number of human studies in stroke patients (nearly 2000) have indicated that 100% oxygen at pressures of 1.5 ATA is better tolerated than higher pressures by the brain injured by acute ischemia.

An alternative to HBO on account of its limitations will be to use low-pressure oxygen therapy (NBO). Several recent animal studies have shown that short duration NBO can be highly neuroprotective and does not increase oxidative stress, if started early after stoke onset. NBO administered solely during the postreperfusion phase was also found to reduce infarct volumes, which is highly relevant given the theoretical concern of exacerbating oxygen free radical-associated reperfusion injury with supplemental oxygen therapy. [14],[15],[16],[17],[18] Further research also that NBO did not significantly worsen blood-brain barrier (BBB) damage, and did not increase the levels of indirect markers of oxidative stress such as matrix metalloproteinase 2 (MMP-2) and MMP-9, hemeoxidase-1 (heat shock protein 32), or protein carbonyl formation at acute or subacute markers of superoxide generation. Additional studies are being conducted to determine whether NBO is safe and effective in models of permanent cerebral ischemia and when used in combination with tPA.

Recently, Singhal and coworkers [19] completed a pilot trial of NBO in which 16 patients with hemispheric ischemic stroke symptoms less than 12 h and diffusion-perfusion mismatch on admission MRI were randomized to 8 h of NBO therapy (45 L/min) or room air. Serial diffusion and perfusion MRI were performed before, during, and after treatment. NBO-treated patients showed improvement in NIHSS scores, reduced growth of DWI lesions, and has previously been documented only with prompt arterial recanalization. There was no radiological or clinical evidence of oxygen toxicity in the small number of patient studies.

In this study, high-flow oxygen therapy started within 12 h of stroke onset did not improve clinical function significantly when compared with those given oxygen at 2 L/min although there was a trend toward improved NIHSS scores. This lack of benefit could be due to delay in initiating the oxygen administration (on an average 6-10 h after stroke onset) and also due to low flow rates (10 L/min) as against 45 L/min used in a previous pilot trial (ref). Our local Ethics Committee did not permit high flow rates. Treatment benefits were not assessed at intervals of 1 h in the first 24 h and the first assessment was only after 24 h. This also could have accounted for a lack of clinical benefit seen since the previous trial documented benefit at 4 h after intervention. However, they did show lasting benefit till 1 week as explained by the significant decrease in the NIHSS score at seventh day [Figure 3].

Out of 20 in experimental group, 11 patients underwent baseline, 24 h and follow-ups MRI. In the control group, nine patients underwent the radiological scanning. Most patients in the acute stage, especially in the first 24 h, were unable to perform the MRI test owing to their neurological condition (they moved in the scanner which made the test difficult). Sedation was avoided as far as possible to avoid altering the sensorium. Clinical assessment was made for all patients included but only a limited number completed the MRI evaluation for DWI lesion volume on account of the above limitation. Similarly, PET scans were not possible within the given period of time due to nonavailability of the dye, patient's neurological status, and some other practical considerations (limited research time on the PET machine, nonfunctionality of the machine).

The mechanisms of NBO's effects are not clearly understood. Preliminary data from a subset of patients enrolled in the NBO pilot clinical trial who underwent detailed MR spectroscopy show that NBO improves brain lactate levels, presumably by restoring aerobic metabolism within ischemic brain regions. Using in vivo electron paramagnetic resonance oximetry, Liu et al. [17] have shown that NBO significantly increases ptiO 2 in "penumbral" brain region. While NBO does not raise brain tissue oxygenation to the same degree as HBO, it is conceivable that even small increments are adequate to overcome ischemic thresholds. Experimental studies with HBO have shown that supplemental oxygen favorably alters the levels of glutamate, lactate, bcl-2, manganese superoxide dismutase, cyclooxygenase-2, and inhibits cell-death mechanisms such as apoptosis. It is likely that NBO has similar biochemical and molecular effects. [17],[24]

Further studies are needed to validate these preliminary results. Perhaps these need to be conducted at the prehospital setting and as an adjunctive therapy with thrombolysis. Although this was a negative study, potential advantages of this intervention cannot be underestimated, especially in developing countries such as India, where cost-effective strategies are of paramount importance.

 
   References Top

1.Burt JT, Kapp JP, Smith RR. Hyperbaric oxygen and cerebral infarction in the gerbil. Surg Neurol 1987;28:265-8.  Back to cited text no. 1
[PUBMED]    
2.Badr AE, Yin W, Mychaskiw G, Zhang JH. Effect of hyperbaric oxygen on striatal metabolites: A microdialysis study in awake freely moving rats after MCA occlusion. Brain Res 2001;916:85-90.  Back to cited text no. 2
[PUBMED]  [FULLTEXT]  
3.Kawamura S, Yasui N, Shirasawa M, Fukasawa H. Therapeutic effects of hyperbaric oxygenation on acute focal cerebral ischemia in rats. Surg Neurol 1990;34:101-6.  Back to cited text no. 3
[PUBMED]    
4.Lou M, Eschenfelder CC, Herdegen T, Brecht S, Deuschl G. Therapeutic window for use of hyperbaric oxygenation in focal transient ischemia in rats. Stroke 2004;35:578-83.  Back to cited text no. 4
[PUBMED]  [FULLTEXT]  
5.Miljkovic-Lolic M, Silbergleit R, Fiskum G, Rosenthal RE. Neuroprotective effects of hyperbaric oxygen treatment in experimental focal cerebral ischemia are associated with reduced brain leukocyte myeloperoxidase activity. Brain Res 2003;971:90-4.  Back to cited text no. 5
[PUBMED]  [FULLTEXT]  
6.Roos JA, Jackson-Friedman C, Lyden P. Effects of hyperbaric oxygen on neurologic outcome for cerebral ischemia in rats. Acad Emerg Med 1998;5:18-24.  Back to cited text no. 6
[PUBMED]  [FULLTEXT]  
7.Schabitz WR, Schade H, Heiland S, Kollmar R, Bardutzky J, Henninger N, et al. Neuroprotection by hyperbaric oxygenation after experimental focal cerebral ischemia monitored by MRI. Stroke 2004;35:1175-9.  Back to cited text no. 7
    
8.Sunami K, Takeda Y, Hashimoto M, Hirakawa M. Hyperbaric oxygen reduces infarct volume in rats by increasing oxygen supply to the ischemic periphery. Crit Care Med 2000;28:2831-6.  Back to cited text no. 8
[PUBMED]  [FULLTEXT]  
9.Veltkamp R, Warner DS, Domoki F, Brinkhous AD, Toole JF, Busija DW. Hyperbaric oxygen decreases infarct size and behavioral deficit after transient focal cerebral ischemia in rats. Brain Res 2000;853:68-73.  Back to cited text no. 9
[PUBMED]  [FULLTEXT]  
10.Veltkamp R, Siebing DA, Heiland S, Schoenffeldt-Varas P, Veltkamp C, Schwaninger M, et al. Hyperbaric oxygen induces rapid protection against focal cerebral ischemia. Brian Res 2005;1037:134-8.  Back to cited text no. 10
    
11.Weinstein PR, Anderson GG, Telles DA. Results of hyperbaric oxygen therapy during temporary middle cerebral artery occlusion in unanesthetized cats. Neurosurgery 1987;20:518-24.  Back to cited text no. 11
[PUBMED]    
12.Yin W, Badr AE, Mychaskiw G, Zhang JH. Down regulation of COX-2 is involved in hyperbaric oxygen treatment in a rat transient focal cerebral ischemia model. Brain Res 2002;926:165-71.  Back to cited text no. 12
[PUBMED]  [FULLTEXT]  
13.Yin D, Zhou C, Kusaka I, Calvert JW, Parent AD, Nanda A, et al. Inhibition of apoptosis by hyperbaric oxygen in a rat focal cerebral ischemic model. J Cereb Blood Flow Metab 2003;23:855-64.  Back to cited text no. 13
[PUBMED]  [FULLTEXT]  
14.Anderson DC, Bottini AG, Jagiella WM, Westphal B, Ford S, Rockswold GL, et al. A pilot study of hyperbaric oxygen in the treatment of human stroke. Stroke 1991;22:1137-42.  Back to cited text no. 14
[PUBMED]  [FULLTEXT]  
15.Nighoghossian N, Trouillas P, Adeleine P, Salord F. Hyperbaric oxygen in the treatment of acute ischemic stroke. A double-blind pilot study. Stroke 1995;26:1369-72.  Back to cited text no. 15
[PUBMED]  [FULLTEXT]  
16.Rusyniak DE, Kirk MA, May JD, Kao LW, Brizendine EJ, Welch JL, et al. Hyperbaric oxygen therapy in acute ischemic stroke: Results of the hyperbaric oxygen in acute ischemic stroke trial pilot study. Stroke 2003;34:571-4.  Back to cited text no. 16
[PUBMED]  [FULLTEXT]  
17.Singhal AB, Dijkhuizen RM, Rosen BR, Lo EH. Normobaric hyperoxia reduces MRI diffusion abnormalities and infarct size in experimental stroke. Neurology 2002;58:945-52.  Back to cited text no. 17
[PUBMED]  [FULLTEXT]  
18.Singhal AB, Wang X, Sumii T, Mori T, Lo EH. Effects of normobaric hyeproxia in a rat model of focal cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 2002;22:861-8.  Back to cited text no. 18
[PUBMED]  [FULLTEXT]  
19.Kim HY, Singhal AB, Lo EH. Normobaric hyperoxia extends the reperfusion window in focal cerebral ischemia. Ann Neurol 2005;57:571-5.  Back to cited text no. 19
[PUBMED]  [FULLTEXT]  
20.Flynn EP, Auer RN. Eubaric hyperoxemia and experimental cerebral infarction. Ann Neurol 2002;52:566-72.  Back to cited text no. 20
[PUBMED]  [FULLTEXT]  
21.Singhal AB, Benner T, Roccatagliata L, Koroshetz WJ, Schaefer PW, Lo EH, et al. A pilot study of normobaric oxygen therapy in acute ischemic stroke. Stroke 2005;36:797-802.  Back to cited text no. 21
[PUBMED]  [FULLTEXT]  
22.Kidwell CS, Saver JL, Mattiello J, Starkman S, Vinuela F, Duckwiler G, et al. Thrombolytic reversal of acute human cerebral ischemic injury shown by diffusion/perfusion magnetic resonance imaging. Ann Neurol 2000;47:462-9.  Back to cited text no. 22
[PUBMED]    
23.Ratai EM, Benner T, Sorensen AG, Vangel M, Koroshetz WJ, Schaefer PW, et al. Therapeutic effects of normobaric hyperoxia in acute stroke: Multivoxel MR-spectroscopic and ADC correlations on serial imaging. 13 th Scientific Meeting of the International Society of Magnetic Resonance in Medicine. 2005.  Back to cited text no. 23
    
24.Liu S, Shi H, Liu W, Furuichi T, Timmins GS, Liu KJ. Interstitial pO2 in ischemic penumbra and core are differentially affected following transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab 2004;24:343-9.  Back to cited text no. 24
[PUBMED]    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5], [Figure 6]


This article has been cited by
1 Neuroprotective gases Fantasy or reality for clinical use?
Jiao Deng,Chong Lei,Yu Chen,Zongping Fang,Qianzi Yang,Haopeng Zhang,Min Cai,Likai Shi,Hailong Dong,Lize Xiong
Progress in Neurobiology. 2014;
[Pubmed]
2 Oxygen in critical care
Hon Liang Tan,Olivia Wijeweera
Trends in Anaesthesia and Critical Care. 2014;
[Pubmed]
3 The potential harm of oxygen therapy in medical emergencies
Alexander D Cornet,Albertus J Kooter,Mike JL Peters,Yvo M Smulders
Critical Care. 2013; 17(2): 313
[Pubmed]
4 Effects of cerebral ischemic and reperfusion on T2*-weighted MRI responses to brief oxygen challenge
Qiang Shen,Fang Du,Shiliang Huang,Timothy Q Duong
Journal of Cerebral Blood Flow & Metabolism. 2013;
[Pubmed]
5 Normobaric hyperoxia-based neuroprotective therapies in ischemic stroke
Zhifeng Qi,Wenlan Liu,Yumin Luo,Xunming Ji,Ke Jian Liu
Medical Gas Research. 2013; 3(1): 2
[Pubmed]
6 Supplemental oxygen therapy in medical emergencies: More harm than benefit?
Cornet, A.D., Kooter, A.J., Peters, M.J.L., Smulders, Y.M.
Archives of Internal Medicine. 2012; 172(3): 289-290
[Pubmed]
7 result 4 Document Prothrombolytic action of normobaric oxygen given alone or in combination with recombinant tissue-plasminogen activator in a rat model of thromboembolic stroke
David, H.N., Haelewyn, B., Degoulet, M., (...), Risso, J.J., Abraini, J.H.
Life Science Journal. 2012;
[Pubmed]
8 Probing ischemic tissue fate with BOLD fMRI of brief oxygen challenge
Shen, Q., Huang, S., Du, F., Duong, T.Q.
Brain Research. 2011; 1425: 132-141
[Pubmed]



 

Top
Print this article  Email this article

    

 
   Search
 
  
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Article in PDF (797 KB)
    Citation Manager
    Access Statistics
    Reader Comments
    Email Alert *
    Add to My List *
* Registration required (free)  


    Abstract
    Introduction
    Materials and Me...
    Results
    Discussion
    References
    Article Figures

 Article Access Statistics
    Viewed1718    
    Printed133    
    Emailed0    
    PDF Downloaded66    
    Comments [Add]    
    Cited by others 8    

Recommend this journal