Annals of Indian Academy of Neurology
  Users Online: 784 Home | About the Journal | InstructionsCurrent Issue | Back IssuesLogin      Print this page Email this page  Small font size Default font size Increase font size
REVIEW ARTICLE
Year : 2016  |  Volume : 19  |  Issue : 2  |  Page : 175-182

Understanding migraine: Potential role of neurogenic inflammation


Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA

Correspondence Address:
Rakesh Malhotra
Vanderbilt University Medical Center, 1161, 21st Avenue, South Nashville, Tennessee
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0972-2327.182302

Rights and Permissions

Neurogenic inflammation, a well-defined pathophysiologial process is characterized by the release of potent vasoactive neuropeptides, predominantly calcitonin gene-related peptide (CGRP), substance P (SP), and neurokinin A from activated peripheral nociceptive sensory nerve terminals (usually C and A delta-fibers). These peptides lead to a cascade of inflammatory tissue responses including arteriolar vasodilation, plasma protein extravasation, and degranulation of mast cells in their peripheral target tissue. Neurogenic inflammatory processes have long been implicated as a possible mechanism involved in the pathophysiology of various human diseases of the nervous system, respiratory system, gastrointestinal tract, urogenital tract, and skin. The recent development of several innovative experimental migraine models has provided evidence suggestive of the involvement of neuropeptides (SP, neurokinin A, and CGRP) in migraine headache. Antidromic stimulation of nociceptive fibers of the trigeminal nerve resulted in a neurogenic inflammatory response with marked increase in plasma protein extravasation from dural blood vessels by the release of various sensory neuropeptides. Several clinically effective abortive antimigraine medications, such as ergots and triptans, have been shown to attenuate the release of neuropeptide and neurogenic plasma protein extravasation. These findings provide support for the validity of using animal models to investigate mechanisms of neurogenic inflammation in migraine. These also further strengthen the notion of migraine being a neuroinflammatory disease. In the clinical context, there is a paucity of knowledge and awareness among physicians regarding the role of neurogenic inflammation in migraine. Improved understanding of the molecular biology, pharmacology, and pathophysiology of neurogenic inflammation may provide the practitioner the context-specific feedback to identify the novel and most effective therapeutic approach to treatment. With this objective, the present review summarizes the evidence supporting the involvement of neurogenic inflammation and neuropeptides in the pathophysiology and pharmacology of migraine headache as well as its potential significance in better tailoring therapeutic interventions in migraine or other neurological disorders. In addition, we have briefly highlighted the pathophysiological role of neurogenic inflammation in various other neurological disorders.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed4068    
    Printed64    
    Emailed0    
    PDF Downloaded128    
    Comments [Add]    

Recommend this journal