Annals of Indian Academy of Neurology
  Users Online: 5295 Home | About the Journal | InstructionsCurrent Issue | Back IssuesLogin      Print this page Email this page  Small font size Default font size Increase font size

Table of Contents
LETTER TO THE EDITOR
Year : 2020  |  Volume : 23  |  Issue : 1  |  Page : 123-125
 

A novel mutation in N-terminal actin-binding domain of the DMD gene presenting becker muscular dystrophy as recurrent exertional rhabdomyolysis: A case report


Department of Neurology, Kyungpook National University Hospital, Daegu, Korea

Date of Web Publication21-Jan-2020

Correspondence Address:
Dr. Jong-Mok Lee
Department of Neurology, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu - 41944
Korea
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/aian.AIAN_215_19

Rights and Permissions

 



How to cite this article:
Lee JM. A novel mutation in N-terminal actin-binding domain of the DMD gene presenting becker muscular dystrophy as recurrent exertional rhabdomyolysis: A case report. Ann Indian Acad Neurol 2020;23:123-5

How to cite this URL:
Lee JM. A novel mutation in N-terminal actin-binding domain of the DMD gene presenting becker muscular dystrophy as recurrent exertional rhabdomyolysis: A case report. Ann Indian Acad Neurol [serial online] 2020 [cited 2020 Feb 26];23:123-5. Available from: http://www.annalsofian.org/text.asp?2020/23/1/123/271738




Sir,

Rhabdomyolysis refers to the acute muscle fiber necrosis, the breakdown of striated muscle.[1] Clinically, it is manifested as acute muscle weakness associated with myalgia and dark urine, which can lead to acute renal insufficiency.[1] The major causes of rhabdomyolysis are acquired etiology, namely, physical exertion, crush injury, tissue ischemia, drugs, and toxins.[1] However, underlying inherited conditions should be considered in the following situations: (1) recurrent rhabdomyolysis evoked by minimal exercise, fever, heat or cold exposure, or fasting, (2) previous history of malignant hyperthermia, (3) family history of rhabdomyolysis, malignant hyperthermia or myopathy, and (4) patients with hyperCKemia between attacks.[2]

Repeated exertional rhabdomyolysis is not only a remarkable feature of inherited metabolic myopathies but also one of the uncommon symptoms in muscular dystrophies.[2] Here, we reported a patient with a novel mutation in the DMD gene who presented as recurrent exertional rhabdomyolysis.

A 17-year-old boy was referred to the department of neurology with recurrent myalgia following exercise. He had suffered an easy fatigability and myalgia several minutes after exercise such as running or trekking the mountain every time since childhood. These symptoms had recovered spontaneously within a day. The second wind phenomenon was not seen. Incidentally, he was found to have an elevated aspartate aminotransferase (73 U/L, normal range <40 U/L, AST) and alanine aminotransferase (65 U/L, normal range <41 U/L) at age of 13 years [Figure 1]a. Spontaneous recovery had left him undiagnosed. At 14 years of age, he experienced dark urine for a day after 500 m running [Figure 1]a. At 17 years, he presented with myalgia on the bilateral thigh with dark urine after 10-minute walking. The laboratory performed on a same day in referring hospital showed an elevated level of serum creatine kinase (73,529 U/L, normal range 39-308 U/L, CK), AST (88 U/L), myoglobin (>1000 ng/mL, normal range 0-110 ng/mL), and myoglobinuria [Figure 1]a. These laboratory derangements brought the patient to our hospital 4 months after the latest attack.
Figure 1: The timeline of clinical information, results of the ischemic forearm exercise test, IHC using dystrophin C-terminal antibody, and genetic analysis. (a) Clinical complaints and the results of the blood test corresponding to symptoms are depicted depending on the age. (b) Exercise-associated lactate and ammonia production is identified. (c) Mildly increased fiber size variation and increased number of fibers with internal nuclei are seen in hematoxylin and eosin stain. Absence of immune activity against dystrophin C-terminal antibody. Scale bar, 100 μm. (d) The mutation c.119T = A (p.Leu40His, NM_004006.2) in the DMD gene is confirmed by Sanger sequence in both patient and mother. AST, aspartate transaminase, U/L; ALT, alanine transaminase, U/L; CK, creatine kinase; U/L; myoglobin, ng/mL

Click here to view


On neurological examination, the muscle strengths of the extremities were normal. The deep tendon reflexes were mildly reduced. The atrophy, calf hypertrophy or arthrogryposis was not identified. The routine laboratory showed an elevated level of serum CK (1,484 U/L), AST (45 U/L), myoglobin (430 ng/mL), and aldolase (185 U/L, normal range <7.6 U/L, [Figure 1]a). Complete blood count, thyroid stimulating hormone, alanine aminotransferase, and urine myoglobin were normal. The ischemic forearm exercise test was normal, showing an elevated serum level of lactic acid and ammonia after exercise [Figure 1]b. The electrocardiogram showed normal sinus rhythm. The findings of nerve conduction studies were normal. The needle electromyography demonstrated positive sharp waves with small amplitude and short duration motor unit action potentials, indicating active myopathic changes.

The muscle pathology from left biceps brachii biopsy showed a mildly increased fiber size variation and increased number of fibers with internal nuclei on hematoxylin and eosin stain in paraffin block [Figure 1]c. Necrotic or regenerating fibers were not seen. However, the immunohistochemistry (IHC) revealed an absence of dystrophin expression using the antibody against the C-terminal region (Thermofisher scientific, PA5-16734, USA, 1:200 dilution, [Figure 1]c). During the hospitalization, we suspected the metabolic myopathies based on the normal neurological examination and episodic attack and performed the whole exome sequencing before getting the histologic results. WES revealed a novel hemizygotic missense mutation c. 119T = A (p. Leu40His, exon 3, NM_004006.2, NG_012232.1, [Figure 1]c) in DMD gene by investigating variants which affect protein function, show a depth of more than 30, and filtered by allele frequency of PopFreqMax less than 0.0001 consisting of the Genome Aggregation Database (gnomAD), the Exome Aggregation Consortium (ExAC), and 1000 Genome (1000 genome). This variant is not present in the Human Gene Mutation Database (HGMD) or Leiden Open Variation Database (https://databases.lovd.nl/shared/genes/DMD) and predicted to be pathogenic by using SIFT/PROVEAN and Mutation taster system. Structure of mutated dystrophin protein was predicted to be destabilizing using SDM web server (ΔΔG = 0.88 kcal/mol) and FoldX (ΔΔG = 19.5414 kcal/mol).[3],[4] Both wild type (Leu40) and mutated (His40) residues were expected not to be part of aggregation-prone regions by an Aggrescan3D server,[5] although the mutated residue (His40) can become solvent exposed by JPred4 server.[6] Moreover, this variant was also identified in the asymptomatic mother as heterozygote by Sanger sequence [Figure 1]d.

Initially, we had suspected metabolic myopathies for the cause of recurrent exertional rhabdomyolysis. However, we could diagnose Becker muscular dystrophy (BMD) based on the absent immunoreactivity to dystrophin C-terminal, elevated resting CK levels, and a novel pathogenic mutation DMD c. 119T = A (p. Leu40His) in genetic analysis.

Patients with muscular dystrophies have been reported with exercise intolerance, namely, anoctaminopathy, caveolinopathy, dysferlinopathy, dystrophinopathy, fukutin-related proteinopathy, and sarcoglycanopathy.[2],[7] The extremely high level of serum CK and mild-to-moderate myoglobinuria are common features in muscular dystrophies presenting rhabdomyolysis.[7] Muscle ache usually occurs in BMD. In fukutin-related proteinopathy, muscle weakness and muscle biopsy can be normal, therefore, the IHC for alpha-dystroglycan is necessary.[7] Dysferlinopathy often shows a marked inflammatory both on muscle biopsy and magnetic resonance imaging.[7] Therefore, multidisciplinary tools are necessary for the differential diagnosis of myopathies associated with rhabdomyolysis.

In cases of BMD with exertional rhabdomyolysis or myalgia,[2],[8],[9] genetic analysis has identified the in-frame deletion in the most cases[2],[8] and rarely the missense mutations of the rod domain.[9] The mutant p. Leu40His found in our case is located on N-terminal actin-binding domain (N-ABD) of dystrophin, which has not been reported previously to have pathogenicity for exertional rhabdomyolysis or myalgia. Recently, reported case harboring p. Asn76Ile in dystrophin also supports the mutation in N-ABD can be pathogenic for BMD.[10]

Concerning the immunoblotting, IHC of dystrophin rod-domain was absent or markedly reduced in patients with in-frame deletions,[2],[8] whereas IHC of dystrophin C-terminal and rod domain was normal in patients with missense mutations.[9] However, absent immunostaining of dystrophin C-terminal has been reported in a patient with a missense mutation in N-ABD,[10] which is compatible with our patient.

In terms of pathomechanism, the loss of hydrophobicity in the actin-binding domain has been suggested in the previous study.[11] An amino acid substitution from leucine to arginine at position 54 is well formulated, which is associated with Duchenne muscular dystrophy.[11] Similarly, in our case, the leucine at position 40 is surrounded by the residue with a hydrophobic side chain at the position Phe21, Val25, Phe41, and Ile111 [Figure 2]a. The amino acid change from leucine to histidine at position 40 is expected to disrupt the interaction in the vicinity by losing hydrophobicity [Figure 2]b. Stability analysis and secondary structure prediction also showed destabilization and solvent exposed nature of p. Leu40His mutation, respectively, although the predicted value of energy transfer differs among prediction systems. However, the mutant was predicted not to be an aggregation-prone region.
Figure 2: Structure of human dystrophin and a pathogenic missense mutation in the dystrophin N-ABD. (a) Left panel: dimer of human dystrophin N-ABDs, Middle panel: structure of the CH1 subdomain, Right panel: Leucine residue at the position 40 and its vicinities. (b) Stereoview of the 2Fo-Fc electron-density map in the vicinity of leucine at residue 40. The electron-density map is defined at 1.0σ

Click here to view


Therefore, maintaining a high degree of clinical suspicion of BMD is advised when patients present with recurrent exertional rhabdomyolysis.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
   References Top

1.
Warren JD, Blumbergs PC, Thompson PD. Rhabdomyolysis: A review. Muscle Nerve 2002;25:332-47.  Back to cited text no. 1
    
2.
Liewluck T, Tian X, Wong LJ, Pestronk A. Dystrophinopathy mimicking metabolic myopathies. Neuromuscul Disord 2015;25:653-7.  Back to cited text no. 2
    
3.
Pandurangan AP, Ochoa-Montano B, Ascher DB, Blundell TL. Sdm: A server for predicting effects of mutations on protein stability. Nucleic Acids Res 2017;45:229-35.  Back to cited text no. 3
    
4.
Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L. The foldx web server: An online force field. Nucleic Acids Res 2005;33:382-8.  Back to cited text no. 4
    
5.
Zambrano R, Jamroz M, Szczasiuk A, Pujols J, Kmiecik S, Ventura S. Aggrescan3d (a3d): Server for prediction of aggregation properties of protein structures. Nucleic Acids Res 2015;43:306-13.  Back to cited text no. 5
    
6.
Drozdetskiy A, Cole C, Procter J, Barton GJ. Jpred4: A protein secondary structure prediction server. Nucleic Acids Res 2015;43:389-94.  Back to cited text no. 6
    
7.
Quinlivan R, Jungbluth H. Myopathic causes of exercise intolerance with rhabdomyolysis. Dev Med Child Neurol 2012;54:886-91.  Back to cited text no. 7
    
8.
Minetti C, Tanji K, Chang HW, Medori R, Cordone G, DiMauro S, et al. Dystrophinopathy in two young boys with exercise-induced cramps and myoglobinuria. Eur J Pediatr 1993;152:848-51.  Back to cited text no. 8
    
9.
Veerapandiyan A, Shashi V, Jiang YH, Gallentine WB, Schoch K, Smith EC. Pseudometabolic presentation of dystrophinopathy due to a missense mutation. Muscle Nerve 2010;42:975-9.  Back to cited text no. 9
    
10.
Koczok K, Mero G, Szabo GP, Madar L, Gombos E, Ajzner E, et al. Anovel point mutation affecting asn76 of dystrophin protein leads to dystrophinopathy. Neuromuscul Disord 2018;28:129-36.  Back to cited text no. 10
    
11.
Norwood FL, Sutherland-Smith AJ, Keep NH, Kendrick-Jones J. The structure of the n-terminal actin-binding domain of human dystrophin and how mutations in this domain may cause duchenne or becker muscular dystrophy. Structure 2000;8:481-91.  Back to cited text no. 11
    


    Figures

  [Figure 1], [Figure 2]



 

Top
Print this article  Email this article

    

 
   Search
 
  
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
    Article in PDF (1,234 KB)
    Citation Manager
    Access Statistics
    Reader Comments
    Email Alert *
    Add to My List *
* Registration required (free)  


    References
    Article Figures

 Article Access Statistics
    Viewed187    
    Printed10    
    Emailed0    
    PDF Downloaded10    
    Comments [Add]    

Recommend this journal