Annals of Indian Academy of Neurology
  Users Online: 1682 Home | About the Journal | InstructionsCurrent Issue | Back IssuesLogin      Print this page Email this page  Small font size Default font size Increase font size

Table of Contents
CASE REPORT
Year : 2020  |  Volume : 23  |  Issue : 2  |  Page : 228-232
 

Kawasaki disease complicated with cerebral vasculitis and severe encephalitis


1 Faculty of Medicine, Institute for Child and Youth Health Care of Vojvodina, Intermediate Care Unit, University of Novi Sad, Novi Sad, Serbia
2 Faculty of Medicine, Institute for Child and Youth Health Care of Vojvodina, Intensive Care Unit, University of Novi Sad, Put Doktora Goldmana 4, Sremska Kamenica, Serbia
3 Faculty of Medicine, Oncology Institute of Vojvodina, Diagnostic Imaging Centre, University of Novi Sad, Novi Sad, Serbia
4 Department for Immunology, Faculty of Medicine, Institute for Child and Youth Health Care of Vojvodina, University of Novi Sad, Novi Sad, Serbia
5 Faculty of Medicine, Institute for Child and Youth Health Care of Vojvodina, Intensive Care Unit and Neonatology, University of Novi Sad, Hajduk Veljkova 10, Novi Sad, Serbia

Date of Submission16-Jun-2018
Date of Acceptance14-Jul-2018
Date of Web Publication26-Feb-2020

Correspondence Address:
Dr. Vesna D Stojanovic
Faculty of Medicine, University of Novi Sad, Institute for Child and Youth Health Care of Vojvodina, Hajduk Veljkova 10, Novi Sad
Serbia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/aian.AIAN_271_18

Rights and Permissions

 

   Abstract 


We report a case of a 7-year-old boy with Kawasaki disease (KD) complicated with cerebral vasculitis and encephalitis. The patient was admitted with signs of encephalopathy, seizures, and coma. The diagnosis of KD was made on the 2nd day of hospitalization based on the clinical features (fever >5 days, maculopapular rash, nonpurulent conjunctivitis, fissured lips, and cervical adenopathy). Brain magnetic resonance imaging findings suggested cerebral vasculitis. Treatment with intravenous immunoglobulin was followed by mild improvement. After a single dose of immunoglobulin, pulse methylprednisolone therapy was started resulting in gradual improvement of consciousness and eventual complete motor and cognitive function recovery with regression of brain magnetic resonance lesions. KD can present with marked neurological symptomatology. Therefore, it should be considered in the differential diagnosis of encephalitis and encephalopathy etiologies in children.


Keywords: Cerebral vasculitis, encephalitis, Kawasaki disease


How to cite this article:
Stojanovic VD, Radovanović TD, Koprivšek KM, Vijatov Ðurić GV, Doronjski AD. Kawasaki disease complicated with cerebral vasculitis and severe encephalitis. Ann Indian Acad Neurol 2020;23:228-32

How to cite this URL:
Stojanovic VD, Radovanović TD, Koprivšek KM, Vijatov Ðurić GV, Doronjski AD. Kawasaki disease complicated with cerebral vasculitis and severe encephalitis. Ann Indian Acad Neurol [serial online] 2020 [cited 2020 Apr 3];23:228-32. Available from: http://www.annalsofian.org/text.asp?2020/23/2/228/249714





   Introduction Top


Kawasaki disease (KD) is an acute febrile systemic vasculitis of childhood. It was first described by Tomisaku Kawasaki in 1967.[1] The disease usually occurs in children <5 years old, with greater prevalence in the Asian population.

KD is characterized by severe, predominantly medium-sized arteries vasculitis, and predilection for coronary arteries. Approximately 20%–25% of untreated patients develop coronary artery aneurysms, making KD the leading cause of acquired cardiovascular disease in children in the developed world.[2]

The cause and pathogenesis of KD is still not completely known. It is supposed that intense inflammatory response follows infection in genetically predisposed children.[3] Systemic vasculitis in KD can result in multisystem organ involvement including the central nervous system (CNS) with complications such as aseptic meningitis, encephalitis, seizures, ataxia, and irritability.

We report a case of a 7-year-old boy with KD complicated with cerebral vasculitis and severe encephalitis.


   Case Report Top


A 7-year-old boy was admitted with generalized convulsive status epilepticus. He had a 4-day history of high fever and diffuse skin rash. According to his medical history, he was previously healthy except for the right tibia fracture sustained after a skiing accident 2 weeks before admission. The family history was unremarkable.

On admission, seizure was treated and stopped with administration of one dose of midazolam and phenobarbital. Detailed physical examination revealed maculopapular rash on the face, trunk and extremities, nonpurulent conjunctivitis, cracked, fissured lips, and cervical lymphadenopathy. He had a fever of 39°C. Meningeal signs were negative. The Glasgow Coma Scale (GCS) score was 7. The rest of his physical examination was unremarkable.

In [Table 1], the laboratory findings on admission and after the intravenous immunoglobulins (IVIGs) therapy are shown. [Table 2] shows the results of immunological analysis. Cerebrospinal fluid (CSF) analysis revealed WBC of 1/mm3, protein 225 mg/dl (up to 50), glucose 4.84 mmol/l (blood glucose 5.02 mmol/l), chloride 118.0 mmol/l, and 118–132 lactate 2.5 mmol/l (1.1–2.8). Results of blood, CSF, and urine bacterial cultures were negative.
Table 1: Laboratory test before and after the immunoglobulins therapy

Click here to view
Table 2: Immunologic tests

Click here to view


Serological tests for viruses IgG and IgM (adenovirus, Epstein–Barr virus, influenza A and B, parvovirus B19, anti-HCV, HBsAg, coxsackievirus, cytomegalovirus, and herpes simplex type 1 and 2) were negative except for positive IgG antibodies to cytomegalovirus and adenovirus. CSF viral screening for herpesvirus was negative. Urine analysis was normal. Computed tomographic scan of the brain was unremarkable. The results of a chest X-ray, an electrocardiogram, and a transthoracic echocardiogram were normal as well as the levels of kinase isoenzyme (creatine kinase-muscle/brain), cardiac troponin I, and plasma N-terminal pro B-type natriuretic peptide. Neck ultrasound revealed cervical lymph nodes of 15 mm diameter bilaterally. An electroencephalogram showed cerebral dysfunction with delta frequency slowing in the parietal–temporal–occipital areas bilaterally.

The patient was admitted to the Intensive Care Unit. Initially, he was treated with phenobarbital, ceftriaxone, acyclovir, and osmotic therapy with mannitol to decrease suspected cerebral edema.

On the 2nd day of hospitalization, the patient remained febrile, with further impairment of consciousness and GCS score of 6. Due to the development of respiratory failure, he was intubated with initiation of mechanical ventilation.

On the same day, urgent brain magnetic resonance imaging (MRI) [Figure 1] was performed. Axial diffusion-weighted image showed hyperintense areas scattered throughout the brain parenchyma, including the basal ganglia (A). These areas showed restricted diffusion on the apparent diffusion coefficient drop and slight hyperintensity on the axial T2-weighted (T2W) image, suggestive of cytotoxic edema (B, C). Three-dimensional time-of-flight (3D-TOF) MR angiography revealed discrete narrowings of middle cerebral artery but no aneurysms (D). Susceptibility-weighted imaging images did not reveal the presence of microhemorrhages and/or subarachnoid hemorrhage (not shown).
Figure 1: Axial diffusion-weighted image shows hyperintense areas scattered throughout the brain parenchyma, including the basal ganglia (a). These areas showed restricted diffusion on the apparent diffusion coefficient map and slight hyperintensity on the axial T2-weighted image, suggestive of cytotoxic edema (b and c). Three-dimensional time-of-flight magnetic resonance angiography revealed discrete narrowings of middle cerebral ar tery but no aneurysms (d). Susceptibility-weighted imaging images did not reveal the presence of microbleeds and/or subarachnoid hemorrhage (not shown)

Click here to view


Based on all the above findings, the patient was diagnosed with KD complicated with cerebral vasculitis and encephalitis. Treatment with IVIG as a single infusion of 2 g/kg along with acetylsalicylic acid (50 mg/kg/day) was started. Within 24 h, the fever resolved with disappearance of skin rash and mild improvement in the level of consciousness.

On the 3rd day of hospitalization, the patient was successfully extubated. Acyclovir treatment was discontinued after laboratory investigations for herpesvirus proved to be negative. On the following days, the boy was confused, occasionally extremely irritable and delirious with persistence of GCS score in the range of 8–10, and recurrence of fever. Brain MRI on the 6th day of hospitalization showed progression of initially noted changes [Figure 2].
Figure 2: Axial diffusion-weighted images show hyperintense areas scattered throughout the cortex, subcortical white matter, and basal ganglia (a-d). These areas showed low ADC values on the apparent diffusion coefficient map, suggestive of cytotoxic edema in acute ischemic abnormalities (e-h)

Click here to view


Therefore, on the 9th day of hospitalization, the patient was started on the intravenous steroid pulse therapy (methylprednisolone 30 mg/kg/day for 5 days) followed by oral prednisolone (2 mg/kg/day). The response to steroid therapy was excellent with significant improvement in neurological status. Full motor function recovery was noted on the 15th day of hospitalization. Improvement of cognitive function was slower but continuous and complete by the time of hospital discharge. Periungual desquamation of the fingers was noted in the 3rd week of illness. Repeated echocardiogram was normal. The patient was discharged after 45 days of hospitalization.

The patient did not have a functional neurological disorder symptom, and he had normal cognitive functions when he was discharged from the hospital. No antiepileptic drugs were used. The dosage of corticosteroids was gradually decreased and then stopped completely after the 3rd month. Follow-up brain MRI, 2 months after the onset of the disease, did not reveal areas with restricted water diffusion (A, B). T2W image showed parenchymal atrophy (C). 3D-TOF MR angiography confirmed normalization of the cerebral circulation [Figure 3].
Figure 3: Follow up magnetic resonance images after the 2 months did not reveal areas with restricted water diffusion (a and b). T2 weighted image showed parenchymal atrophy (c). Three dimensional time of flight magnetic resonance angiography confirmed normalization of the cerebral circulation (d)

Click here to view



   Discussion Top


There is no specific, pathognomonic test for the diagnosis of KD. The diagnosis of classic KD is based on the diagnostic criteria, persistence of fever for at least 5 days, and four or more of the five major clinical features: (1) presence of polymorphous rash, (2) bilateral conjunctival injection without exudate, (3) changes in extremities (erythema of palms and soles, edema of hands and feet, periungual peeling of fingers, and toes in the 2nd or 3rd week of illness), (4) changes of the oral cavity and lips (erythematous and cracked lips, strawberry tongue, hyperemia of oral, and pharyngeal mucosae), and (5) cervical lymphadenopathy.[2]

In the present case, the patient fulfilled diagnostic criteria on the 2nd day of hospitalization which lead to the diagnosis of KD. He had fever for 5 days, maculopapular rash, nonpurulent conjunctivitis, fissured lips, and cervical lymphadenopathy. The diagnosis was additionally supported by laboratory findings of elevated acute-phase reactants and erythrocyte sedimentation rate (ESR of 120 mm/h on the 8th day of hospitalization) as well as periungual desquamation of the fingers in the 3rd week of illness.

KD is a multiorgan disorder with systemic inflammation of the predominantly medium-sized arteries. Inflammation of the coronary arteries is the most frequent and the most important complication, but around 1% up to 30% of patients with KD developed some kind of CNS disorders such as meningitis, seizures, ataxia, sensorineural hearing loss, hemiplegia, and disturbed consciousness.[4],[5]

Meningoencephalitis as a complication of KD is reported with the incidence of 3.7% and can be caused by cerebral vasculitis.[6] Histopathological findings in KD cases revealed signs of cerebral vasculitis affecting medium- and small-sized vessels, with features of endoarteritis, periarteritis, and perivascular cuffing.[7] In the study by Ichiyama et al., single-photon emission computed tomography imaging performed in children with KD showed transient localized cerebral hypoperfusion in 6 of 21 patients during the acute stage of illness,[8] which suggests that CNS manifestations of KD occur due to cerebral vasculitis and impaired cerebral blood flow.

There are case reports describing CNS disorders such as encephalitis and meningitis as initial presentation of KD before the development of typical clinical features such as maculopapular rash, nonpurulent conjunctivitis, and desquamation.[9],[10]

In our patient, infectious encephalitis as the cause of encephalopathy was excluded by CSF analysis and negative viral and bacterial laboratory findings. Based on the clinical pictures, initial immunological analysis and their follow-up, the vasculitis (encephalitis) of the other autoimmune etiology has been ruled out. The diagnosis of noninfectious encephalitis as a part of KD spectrum was made on the grounds of clinical picture and brain MRI and MRA findings, suggesting cerebral vasculitis. Neuroradiological changes in KD with CNS involvement are not specific. They can include cerebral infarctions, atrophy, subdural effusions, reversible T2 hyperintensity in the splenium of the corpus callosum, subcortical lesions, and posterior reversible encephalopathy syndrome.[11] IVIG and acetylsalicylic acid is the mainstay of initial KD treatment.[12]

Approximately 10%–20% of patients do not respond to IVIG. In these cases, retreatment with additional dose of IVIG or intravenous methylprednisolone therapy should be considered.[13] Corticosteroid treatment is associated with shorter duration of fever and lower medical costs. Our patient response to corticosteroid pulse therapy was excellent, without serious treatment side effects and good outcome.

After the IVIG therapy, there has been a significant improvement of the laboratory findings, but the clinical condition of the patient (neurological finding) has not improved, so we had a dilemma about what therapy we should continue, corticosteroids or plasma exchange. The efficiency of plasma exchange has been proven in the patients who have not had a suitable therapeutic response to IVIG. In the case, there has not been a decrease of inflammatory markers after IVIG[14] – which our patient had, the other indication for plasma exchange has been the coronary artery dilatation[15] which has not been detected in our patient with the successive follow-up of echocardiography. Those were the reasons why we have decided to continue treatment with the corticosteroids.

In conclusion, KD can be associated with serious CNS disorders. Therefore, KD should be considered in the differential diagnosis in all febrile children with signs of encephalopathy.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
   References Top

1.
Kawasaki T. Acute febrile mucocutaneous syndrome with lymphoid involvement with specific desquamation of the fingers and toes in children. Jpn J Allergol 1967;16:178-222.  Back to cited text no. 1
    
2.
Newburger JW, Takahashi M, Gerber MA, Gewitz MH, Tani LY, Burns JC, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: A statement for health professionals from the committee on rheumatic fever, endocarditis and Kawasaki disease, council on cardiovascular disease in the young American Heart Association. Circulation 2004;110:2747-71.  Back to cited text no. 2
    
3.
Yeung RS. Kawasaki disease: Update on pathogenesis. Curr Opin Rheumatol 2010;22:551-60.  Back to cited text no. 3
    
4.
Terasawa K, Ichinose E, Matsuishi T, Kato H. Neurological complications in Kawasaki disease. Brain Dev 1983;5:371-4.  Back to cited text no. 4
    
5.
Alves NR, Magalhães CM, Almeida Rde F, Santos RC, Gandolfi L, Pratesi R, et al. Prospective study of Kawasaki disease complications: Review of 115 cases. Rev Assoc Med Bras (1992) 2011;57:295-300.  Back to cited text no. 5
    
6.
Takagi K, Umezawa T, Saji T, Morooka K, Matsuo N. Meningoencephalitis in Kawasaki disease. No To Hattatsu 1990;22:429-35.  Back to cited text no. 6
    
7.
Amano S, Hazama F. Neutral involvement in Kawasaki disease. Acta Pathol Jpn 1980;30:365-73.  Back to cited text no. 7
    
8.
Ichiyama T, Nishikawa M, Hayashi T, Koga M, Tashiro N, Furukawa S, et al. Cerebral hypoperfusion during acute Kawasaki disease. Stroke 1998;29:1320-1.  Back to cited text no. 8
    
9.
Husain E, Hoque E. Meningoencephalitis as a presentation of Kawasaki disease. J Child Neurol 2006;21:1080-1.  Back to cited text no. 9
    
10.
Attia TH, Saeed MA, Fathalla D. Kawasaki disease presented with meningitis in an Egyptian adolescent. J Case Rep Stud 2015;3:602.  Back to cited text no. 10
    
11.
Okanishi T, Enoki H. Transient subcortical high-signal lesions in Kawasaki syndrome. Pediatr Neurol 2012;47:295-8.  Back to cited text no. 11
    
12.
Weng KP, Ou SF, Lin CC, Hsieh KS. Recent advances in the treatment of Kawasaki disease. J Chin Med Assoc 2011;74:481-4.  Back to cited text no. 12
    
13.
Ogata S, Bando Y, Kimura S, Ando H, Nakahata Y, Ogihara Y, et al. The strategy of immune globulin resistant Kawasaki disease: A comparative study of additional immune globulin and steroid pulse therapy. J Cardiol 2009;53:15-9.  Back to cited text no. 13
    
14.
Mori M, Imagawa T, Katakura S, Miyamae T, Okuyama K, Ito S, et al. Efficacy of plasma exchange therapy for Kawasaki disease intractable to intravenous gamma-globulin. Mod Rheumatol 2004;14:43-7.  Back to cited text no. 14
    
15.
Kaida YX, Kambe T, Kishimoto S, Koteda Y, Suda K, Yamamoto R, et al. Efficacy and safety of plasma exchange for Kawasaki disease with coronary artery dilatation. Renal Replace Ther 2017;3:50. doi: 10.1186/s41100-017-0130-y.  Back to cited text no. 15
    


    Figures

  [Figure 1], [Figure 2], [Figure 3]
 
 
    Tables

  [Table 1], [Table 2]



 

Top
Print this article  Email this article

    

 
   Search
 
  
    Similar in PUBMED
 Related articles
    Article in PDF (728 KB)
    Citation Manager
    Access Statistics
    Reader Comments
    Email Alert *
    Add to My List *
* Registration required (free)  


    Abstract
     Introduction
     Case Report
     Discussion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed265    
    Printed4    
    Emailed0    
    PDF Downloaded16    
    Comments [Add]    

Recommend this journal