BRIV_adv
Annals of Indian Academy of Neurology
  Users Online: 1794 Home | About the Journal | InstructionsCurrent Issue | Back IssuesLogin      Print this page Email this page  Small font size Default font size Increase font size

Table of Contents
VIEWPOINT
Year : 2020  |  Volume : 23  |  Issue : 5  |  Page : 592-597
 

Teleneurorehabilitation for Parkinson's Disease: A Panacea for the Times to Come?


Department of Neurology, Lady Hardinge Medical College, New Delhi, India

Date of Submission07-Jun-2020
Date of Acceptance04-Aug-2020
Date of Web Publication26-Oct-2020

Correspondence Address:
Rajinder K Dhamija
Department of Neurology, Lady Hardinge Medical College, New Delhi
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/aian.AIAN_566_20

Rights and Permissions

 

   Abstract 


Telemedicine is witnessing a rebirth due to the COVID-19 pandemic and the continuing need for limited-contact or contactless care in medicine. Telerehabilitation, an offshoot of telemedicine, is a valuable yet underexplored tool in the therapeutic armamentarium of patients with neurological conditions, particularly Parkinson’s disease (PD). Although there is evidence in literature reporting the use of telerehabilitation and virtual reality-based services in providing rehabilitation to improve speech, swallowing, gait, and postural instability among persons with PD, the evidence is limited due to small patient numbers. Teleneurorehabilitation (TNR) is an underutilized strategy that may be as effective and perhaps more feasible and affordable among Indian PD patients and also allows sustained rehabilitation. In this article, we encapsulate the evidence on the utility and efficacy of TNR among persons with PD and call upon the neurology community to recognize and utilize the valuable asset that TNR may be for PD patients.


Keywords: Cognition, neurorehabilitation, Parkinson’s disease, telemedicine, teleneurology, virtual care


How to cite this article:
Garg D, Dhamija RK. Teleneurorehabilitation for Parkinson's Disease: A Panacea for the Times to Come?. Ann Indian Acad Neurol 2020;23:592-7

How to cite this URL:
Garg D, Dhamija RK. Teleneurorehabilitation for Parkinson's Disease: A Panacea for the Times to Come?. Ann Indian Acad Neurol [serial online] 2020 [cited 2021 Dec 1];23:592-7. Available from: https://www.annalsofian.org/text.asp?2020/23/5/592/298061





   Introduction Top


The practice of medicine is witnessing several upheavals in response to the COVID-19 pandemic. An erstwhile underutilized field, telemedicine has had a rebirth. Telemedicine is the use of technology for the application of medicine and includes remote videoconferencing, e-mail, telephone, fax, and other technological services. “Teleneurology” is the practice of neurology via telemedicine.[1] Telerehabilitation is one of the offshoots of telemedicine. Although telemedicine has been in existence from the late 1950s, its growth and evolution has been unhurried till now.[2] However, the demand for virtual care and telemedicine is witnessing an upsurge to avoid transmission of infection via physical contact between physicians and patients and when patients are unable to visit their neurologists due to movement restrictions in place. Telerehabilitation is the natural next step, once the provision of medical opinion and prescription via telemedicine becomes seamless. Telerehabilitation may be defined as a set of interventions and protocols designed to deliver rehabilitation at a distance virtually using digital technologies.[3]

Persons with Parkinson’s disease (PD) form an optimal target population for telerehabilitation due to an unfortunate combination of motor disability and difficulty with travel combined with myriad benefits from rehabilitation.[4] Long-term rehabilitation is known to improve motor and cognitive outcomes in PD.[5] However, long-term rehabilitation requires intensive inputs from rehabilitation specialists, keen patient commitment, and dedicated rehabilitation space and causes financial burden.[6] In this viewpoint, we rest the case for teleneurorehabilitation (TNR) as an ideal answer to the call of the times for continued rehabilitation, particularly in pandemic settings. However, scientific evidence of TNR for various facets of PD is fairly limited [Table 1].
Table 1: List of PubMed-indexed studies on teleneurorehabilitation in Parkinson's Disease

Click here to view



   The COVID-19 Crisis and The Need for Teleneurorehabilitation Top


The reliance on teleneurology has rapidly increased with the ongoing COVID-19 crisis. Patients are either unable to access in-person hospital services due to lockdowns or are unwilling due to fear of contracting the COVID-19 infection in hospital. This technology-based service enables access to healthcare from remote sites. Due to lack of routine services, regular rehabilitative efforts on the part of the patient are disrupted and may contribute to detriment in physical and emotional well-being. This is particularly true for persons with PD, who need to exercise and continue rehabilitation on a maintenance basis.


   Teleneurorehabilitation: The Journey So Far Top


The field of telerehabilitation is fairly new, with the first scientific publication dating to 1998.[22]

In a review of telerehabilitation assessment including clinical outcomes, costs, practice, and utilization including broad fields of cardiology, neurology, trauma, community, and speech and language disorders, Kairy et al. highlight that telerehabilitation was highly acceptable by both patients and rehabilitation therapists.[23] The clinical outcomes were generally good, although measurements against an alternative mode of rehabilitation delivery were scarce. Patients had high rates of compliance. Consultation times were also longer with telerehabilitation. Home-based rehabilitation, including rehabilitation utilizing technology-based service, already has a distinct and effective role in stroke rehabilitation.[24]

Although there are sundry laws to protect data pertaining to healthcare in different countries such as US and Canada, India lacks such provisions. Although the Ministry of Health and Family Welfare created Digital Information Security in Healthcare Act (DISHA) in 2015, this did not become legislation.[25] Telemedicine has been largely considered disapprovingly by Indian legislature and governing systems. However, in view of the COVID-19 pandemic, the Medical Council of India (MCI) in concert with the NITI Aayog formulated guidelines encompassing the practice of telemedicine in India, which was released in March 2020.[26] These are the regulations that guide all telemedicine-based communication in India till date.

Prior to this, development in the field of telemedicine and telerehabilitation was naturally snail-paced. Telemedicine invokes the learning and relearning of a new paradigm of care delivery, and hence, efforts to initiate it formally may lack organizational vigor and thrust, especially when the traditional model of care seems to run in a relatively well-oiled fashion.

There is very little data from India on TNR. One study from the National Institute of Mental Health and Neurosciences (NIMHANS), a retrospective chart review, assessed 37 TNR consultations performed over 3.5 years.[27] The study concluded that TNR services are feasible, effective, and less resource-intensive in delivering quality telemedicine care in India. In another study that assessed geriatric rehabilitation through teleservices, 22 people were recruited from the four Community Centers in Delhi/NCR, age range 65–90 years.[28] Modified conventional balance protocol with individualized and preventive education on falls was given through Skype. Improvement was shown in Berg Balance Score. 100% clients agreed that telerehabilitation could be used to continue follow-up rehabilitation and for saving costs.


   Why is TNR An Ideal Solution for Indian Parkinson’s Disease Patients? Top


In our resource-constrained settings, duration of hospitalization tends to be minimized, shifting the rehabilitative phase of care as a predominantly outpatient activity. The benefits obtained from hospital rehabilitation tend to attenuate over time, leading to functional waning. PD as such is usually managed as an outpatient condition. Rehabilitation services for PD patients are also primarily outpatient based. Many PD patients continue to be stable on medications and come to the hospital for a prescription refill after a gap of several weeks to months. Rehabilitation services are likely accessed to an even lesser extent. This leads to a disruption in the care continuum for these patients. TNR, which may be administered via various potential modalities [Table 2], may be a solution providing home-based care. Multiple application software under the gamut of digital health are in existence that are dedicated to the diagnosis, management, and assessment of PD patients. However, scientific evidence validating the same is limited and low quality by and large, serving to highlight the lacunae in literature. In addition, India seems to offer a perfect milieu for such an endeavor. It is estimated that around 50 crore Indians are using smartphones in the year 2020. Above 77% of Indians are accessing broadband services via smartphones.[29]
Table 2: Potential device and technology utilization for teleneurorehabilitation for PD

Click here to view


Potential benefits and pitfalls

In general, telehealth increases access to health care, facilitates greater continuity of care, and shrinks expenses while simultaneously preserving or improving patient outcomes. TNR has obvious apparent benefits [Table 3]. Patients with PD need not travel to the hospital for rehabilitation. Travelling has been restricted in view of lockdowns in these difficult times. Travel is also known to be a deterrent to continued rehabilitation. The economic ramifications are also favorable, with cutting down the cost of travel of the patient and the caretaker to hospital. Waiting room physical distancing and delays are circumvented. Rehabilitation delivered at home avoids person-to-person contact and is also comfortable. In addition, the intensity and duration of rehabilitation may be increased.[22] Telerehabilitation also encourages patient engagement and motivation for sustained rehabilitation effort. It is also likely to make adherence less cumbersome by removing issues pertaining to cost and travel, as well as ancillary inconveniences.
Table 3: Challenges, scope, and future directions of teleneurorehabilitation for PD[20]

Click here to view


Technology-based symptom assessment in PD has been demonstrated with use of the SENSE-PARK system.[30] This consists of three sensors worn during the day and one at night integrated with a smartphone App, balance board, and a computer software. In a controlled 12-week study, this system had good acceptability by PD patients.

However, uniform well-tested telerehabilitation strategies and protocols designed for PD do not exist currently. Probably, training of the care deliverer, the rehabilitation specialist, in the delivery of services via rehabilitation will need to be organized and tested to ensure standard care. Acceptability of the technology by both health care providers and patients, organizational support for technical support may pose additional hurdles. A study demonstrated that after completion of traditional in-person speech therapy among patients with PD, most patients (76%) showed willingness to participate in telerehabilitation in the future. This was independent of age, gender, disease severity, and self-reported skill with technology. However, better cognition among PD patients and higher school education increased acceptance to the idea of telerehabilitation.[31]

One of the adverse consequences may be loss of contact between the patient and the rehabilitation specialist, with sensory input playing an important role in the rehabilitation process. Moreover, without physical supervision, the patient may employ deficient compensation strategies during the exercise. If any expensive physical apparatus is needed for rehabilitation, the patient may not be able to afford these.


   Specific Benefits of TNR in Parkinson’s Disease: The Evidence Top


Speech and voice

Between 60% and 90% of persons with PD experience speech and voice-related issues.[32] Prominent difficulties, falling within the realm of hypokinetic dysarthria include reduced loudness, monotonous pitch, hoarseness, breathy quality, harshness, brief rushes, and altered perioral mechanics. Dysarthria may be debilitating to social interactions and negatively impacts the quality of life. The Lee Silverman Voice Treatment (LSVT) is a technique to improve voice issues in these patients.[33] This necessitates intensive daily therapy for 4 weeks. Fewer than 5% of patients with PD undergo and maintain speech rehabilitation. Foremost reasons for nonadherence include issues with travel, cost, lack of a companion, and motor disability.[34]

In a study with 24 PD patients, speech therapy (LSVT) delivered via videophones was compared to a previous similar study by Ramig et al.[33] and found significant improvements in vocal decibels. Ramig LO, Sapir S, Fox C, Countryman S. Changes in vocal loudness following intensive voice treatment (LSVT®) in individuals with Parkinson’s disease: A comparison with untreated patients and normal age-matched controls. Move Disord 2001;16:79–83. In addition, videophone delivery of rehabilitation saved several expenses such as $953.00 for mileage, and $269.00 for other costs for 16 visits.[19] A small Malaysian study examined the feasibility of delivering intensive voice therapy to 11 PD patients via video-conferencing using WhatsApp.[9] 12 sessions were performed over 4 weeks. Improvement in speech loudness parameters was reported. The study also reported high patient satisfaction with this mode of delivery.

In a noninferiority randomized controlled trial, 31 patients with dysarthria related to PD from a metropolitan area randomly received face-to-face versus online LSVT LOUD and 21 participants from nonmetropolitan areas received online treatment.[15] 21 Clinical outcomes and quality of life parameters with online treatment were found to be noninferior to face-to-face treatment. In another small trial, 34 PD patients with dysarthria were randomized to receive LSVT or face-to-face speech therapy and online treatment was found to be noninferior as well as had high rates of patient satisfaction. Thus, there is evidence that TNR is feasible and noninferior to face-to-face therapy and preferred by PD patients.

Swallowing

Swallowing dysfunction in PD is reported by one-third of PD patients. However, 80% may have dysphagia by objective assessment.[35] Swallowing dysfunction in PD may be attributable to problems in the oral and pharyngeal phases. These include poor oral and lingual bolus control, delay in the initiation of the pharyngeal phase as well as laryngeal movement and esophageal coordination.[36] All of these increase the propensity for aspiration. Dysphagia management in PD incorporates indirect strategies such as bolus adjustment as well as direct strategies. A systematic review by van Hooren et al. determined that exercises for oral strength as well as the articulators and larynx combined with bolus adjustment as well thermal and tactile stimulation led to improvement but could not improve all aspects of dysphagia.[37] Several other interventions that have improved dysphagia include biofeedback, expiratory muscle strength training, and video-assisted training. The use of telemedicine has been studied in only the assessment of dysphagia.[7] Ward et al. compared face-to-face with online assessment of swallowing in PD patients.[38] They reported acceptable levels of agreement between assessors in both arms. However, there are no studies reporting the reliability of telerehabilitation for improvement of swallowing dysfunction in PD patients.

Posture and gait

Almost three-quarter of patients with PD have postural instability which may lead to falls.[39] PD patients experience postural instability due to several reasons, predominantly due to lack of sensory inputs from visual, proprioceptive, and vestibular pathways. Rehabilitation acquires enhanced significance because dopaminergic drugs have limited benefit in postural instability. In a multicentric study of 76 patients with PD, patients were randomized to in-home virtual reality (VR)-based balance training via the Wii Fit Nintendo system compared to in-clinic sensory integration balance training (SIBT).[14] This study found that both static and dynamic posture was improved in patients who received in-home VR-based balance training comparable to SIBT. The total cost of VR-based telerehabilitation was also lower than SIBT. Of late, VR has emerged as a new tool in the neurorehabilitation armamentarium.[8] VR has been reported to improve both balance and activities of daily living among PD patients. However, a Cochrane systematic review in 2013 concluded that VR-based rehabilitation improved only stride length and speed among PD patients compared to routine training.[40] In a recent 2019 systematic review, 16 articles and 555 PD patients were included. VR-based rehabilitation outperformed conventional rehabilitation in three fields: Step and stride length, balance, and mobility.[8] Gait speed was unaffected. In addition, VR-based rehabilitation demonstrated comparatively larger improvement in the quality of life, confidence levels, and neuropsychiatric symptoms. Cognitive functions were similar in both practices.

In a small study on 10 patients with PD and 10 healthy controls, tactile cues were delivered using a smartphone which was attached to the dominant arm.[41] An android application was used to control these. Tactile cues were used to modulate heel tapping and walking activities. The use of tactile clues enabled PD patients to perform walking tasks and diminished synchronization errors. Thus, TNR has been shown to be an effective alternative to person-to-person rehabilitation for gait and postural instability in PD patients.


   Scope and Directions Top


From the evidence above and more, a few broad points emerge. Technology-assisted and technology-based rehabilitation strategies are both feasible and well-liked by PD patients and seem to be as effective as traditional rehabilitation strategies. There are several studies that compare telerehabilitation with in-person rehabilitation for speech, communication, postural instability, and gait among PD patients. However, a variety of areas need to be explored further such as cognition as well increase evidence in other areas as well [Table 3]. The lack of Indian data is concerning but opens up an avenue to explore to better the management of PD patients using technology-based approaches in our setting.


   Conclusions Top


We urge the neurology community, especially neurologists taking care of persons with PD to strongly consider the potential benefits and feasibility of TNR in current practice. We also call for evidence from India on the benefits and viability of TNR not only in Parkinson’s disease but also in other neurological conditions. As we deal with the demands of taking care of our patients in a limited-contact and virtual manner, there is a need to strengthen our experience with the same, particularly in the field of neurorehabilitation.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
   References Top

1.
Wechsler LR, Tsao JW, Levine SR, Swain-Eng RJ, Adams RJ, Demaerschalk BM, et al. Teleneurology applications. Neurology 2013;80:670-6.  Back to cited text no. 1
    
2.
Cipolat C, Geiges M. The history of telemedicine. Curr Probl Dermatol 2003;32:6-11.  Back to cited text no. 2
    
3.
Zampolini M, Todeschini E, Bernabeu Guitart M, Hermens H, Ilsbroukx S, Macellari V, et al. Tele-rehabilitation: Present and future. Ann Ist Super Sanita 2008;44:125-34.  Back to cited text no. 3
    
4.
Garg D, Dhamija RK. The challenge of managing Parkinson’s disease patients during the COVID-19 pandemic. Ann Indian Acad Neurol 2020;23:S24-7.  Back to cited text no. 4
    
5.
Díez-Cirarda M, Ibarretxe-Bilbao N, Peña J, Ojeda N. Neurorehabilitation in Parkinson’s disease: A critical review of cognitive rehabilitation effects on cognition and brain. Neural Plasticity 2018:1-12. doi: https://doi.org/10.1155/2018/2651918.  Back to cited text no. 5
    
6.
Lahiri D, Ardila A. COVID-19 pandemic: A neurological perspective. Cureus 2020;12:e7889.  Back to cited text no. 6
    
7.
Theodoros D, Aldridge D, Hill AJ, Russell T. Technology-enabled management of communication and swallowing disorders in Parkinson’s disease: A systematic scoping review: Technology-enabled management in Parkinson’s disease. Int J Lang Commun Disord 2019;54:170-88.  Back to cited text no. 7
    
8.
Lei C, Sunzi K, Dai F, Liu X, Wang Y, Zhang B, et al. Effects of virtual reality rehabilitation training on gait and balance in patients with Parkinson’s disease: A systematic review. PloS One 2019;14:e0224819.  Back to cited text no. 8
    
9.
Chan MY, Chu SY, Ahmad K, Ibrahim NM. Voice therapy for Parkinson’s disease via smartphone videoconference in Malaysia: A preliminary study. J Telemed Telecare 2019;1357633X19870913. doi: 10.1177/1357633X19870913. Online ahead of print.  Back to cited text no. 9
    
10.
Quinn R, Park S, Theodoros D, Hill AJ. Delivering group speech maintenance therapy via telerehabilitation to people with Parkinson’s disease: A pilot study. Int J Speech Lang Pathol 2019;21:385-94.  Back to cited text no. 10
    
11.
Cikajlo I, Hukić A, Dolinšek I, Zajc D, Vesel M, Krizmanič T, et al. Can telerehabilitation games lead to functional improvement of upper extremities in individuals with Parkinson’s disease? Int J Rehabil Res 2018;41:230-8.  Back to cited text no. 11
    
12.
Albiol-Pérez S, Gil-Gómez J-A, Muñoz-Tomás M-T, Gil-Gómez H, Vial-Escolano R, Lozano-Quilis J-A. The effect of balance training on postural control in patients with Parkinson’s disease using a virtual rehabilitation system. Methods Inf Med 2017;56:138-44.  Back to cited text no. 12
    
13.
Seidler KJ, Duncan RP, McNeely ME, Hackney ME, Earhart GM. Feasibility and preliminary efficacy of a telerehabilitation approach to group adapted tango instruction for people with Parkinson disease. J Telemed Telecare 2017;23:740-6.  Back to cited text no. 13
    
14.
Gandolfi M, Geroin C, Dimitrova E, Boldrini P, Waldner A, Bonadiman S, et al. Virtual reality telerehabilitation for postural instability in Parkinson’s disease: A multicenter, single-blind, randomized, controlled trial. Biomed Res Int 2017;2017:7962826.  Back to cited text no. 14
    
15.
Theodoros DG, Hill AJ, Russell TG. Clinical and quality of life outcomes of speech treatment for Parkinson’s disease delivered to the home via telerehabilitation: A noninferiority randomized controlled trial. Am J Speech Lang Pathol 2016;25:214-32.  Back to cited text no. 15
    
16.
Russell TG, Hoffmann TC, Nelson M, Thompson L, Vincent A. Internet-based physical assessment of people with Parkinson disease is accurate and reliable: A pilot study. J Rehabil Res Dev 2013;50:643-50.  Back to cited text no. 16
    
17.
Constantinescu G, Theodoros D, Russell T, Ward E, Wilson S, Wootton R. Treating disordered speech and voice in Parkinson’s disease online: A randomized controlled non-inferiority trial. Int J Lang Commun Disord 2011;46:1-16.  Back to cited text no. 17
    
18.
Constantinescu G, Theodoros D, Russell T, Ward E, Wilson S, Wootton R. Assessing disordered speech and voice in Parkinson’s disease: A telerehabilitation application. Int J Lang Commun Disord 2010;45:630-44.  Back to cited text no. 18
    
19.
Tindall LR, Huebner RA, Stemple JC, Kleinert HL. Videophone-delivered voice therapy: A comparative analysis of outcomes to traditional delivery for adults with Parkinson’s disease. Telemed J E Health 2008;14:1070-7.  Back to cited text no. 19
    
20.
Hoffmann T, Russell T, Thompson L, Vincent A, Nelson M. Using the Internet to assess activities of daily living and hand function in people with Parkinson’s disease. NeuroRehabilitation. 2008;23:253-61.  Back to cited text no. 20
    
21.
Giansanti D, Macellari V, Maccioni G. Telemonitoring and telerehabilitation of patients with Parkinson’s disease: Health technology assessment of a novel wearable step counter. Telemed J E Health 2008;14:76-83.  Back to cited text no. 21
    
22.
Rogante M, Grigioni M, Cordella D, Giacomozzi C. Ten years of telerehabilitation: A literature overview of technologies and clinical applications. NeuroRehabilitation 2010;27:287-304.  Back to cited text no. 22
    
23.
Kairy D, Lehoux P, Vincent C, Visintin M. A systematic review of clinical outcomes, clinical process, healthcare utilization and costs associated with telerehabilitation. Disabil Rehabil 2009;31:427-47.  Back to cited text no. 23
    
24.
Mayo Nancy E. Stroke rehabilitation at home. Stroke 2016;47:1685-91.  Back to cited text no. 24
    
25.
Overview: Digital Information Security in Healthcare Act | Ikigai Law. [Last accessed on 2020 Jun 6]. Https://www.ikigailaw.com/overview-digital-information-security-in-healthcare-act-disha/.  Back to cited text no. 25
    
26.
Telemedicine Practice Guidelines: Enabling registered medical practitioners to provide healthcare using telemedicine. In: https://www.mohfw.gov.in/pdf/Telemedicine.pdf. [Last accessed on 2020 Aug 3].  Back to cited text no. 26
    
27.
Khanna M, Gowda GS, Bagevadi VI, Gupta A, Kulkarni K, Shyam RPS, et al. Feasibility and utility of tele-neurorehabilitation service in India: Experience from a quaternary center. J Neurosci Rural Pract 2018;9:541-4.  Back to cited text no. 27
[PUBMED]  [Full text]  
28.
Tyagi N, Aikat R, Singh JP. Tele-rehabilitation as an adjunct service for geri care: Reaching the unreached. Int J Sci Res 2015;4:19-21.  Back to cited text no. 28
    
29.
techINSIGHT – At 502.2 million Smartphone users, its time for Smartphone brands to turn towards services in 2020 – techARC. [Last accessed on 2020 Aug 3]. Https://techarc.net/techinsight-at-502-2-million-smartphone-users-its-time-for-smartphone -brands-to-turn-towards-services-in-2020/.  Back to cited text no. 29
    
30.
Ferreira JJ, Godinho C, Santos AT, Domingos J, Abreu D, Lobo R, et al. Quantitative home-based assessment of Parkinson’s symptoms: The SENSE-PARK feasibility and usability study. BMC Neurol 2015;15:89.  Back to cited text no. 30
    
31.
Dias AE, Limongi JCP, Hsing WT, Barbosa ER. Telerehabilitation in Parkinson’s disease: Influence of cognitive status. Dement Neuropsychol 2016;10:327-32.  Back to cited text no. 31
    
32.
Ramig LO, Fox C, Sapir S. Parkinson’s disease: Speech and voice disorders and their treatment with the Lee Silverman voice treatment. Semin Speech Lang 2004;25:169-80.  Back to cited text no. 32
    
33.
Ramig LO, Sapir S, Countryman S, Pawlas AA, O’Brien C, Hoehn M, et al. Intensive voice treatment (LSVTÒ) for patients with Parkinson’s disease: A 2 year follow up. J Neurol Neurosurg Psychiatry 2001;71:493-8.  Back to cited text no. 33
    
34.
Almathami HKY, Win KT, Vlahu-Gjorgievska E. Barriers and facilitators that influence telemedicine-based, real-time, online consultation at patients’ homes: Systematic literature review. J Med Internet Res 2020;22:e16407.  Back to cited text no. 34
    
35.
Kalf JG, de Swart BJM, Bloem BR, Munneke M. Prevalence of oropharyngeal dysphagia in Parkinson’s disease: A meta-analysis. Parkinsonism Relat Disord 2012;18:311-5.  Back to cited text no. 35
    
36.
Troche MS, Sapienza CM, Rosenbek JC. Effects of bolus consistency on timing and safety of swallow in patients with Parkinson’s disease. Dysphagia 2008;23:26-32.  Back to cited text no. 36
    
37.
van Hooren MRA, Baijens LWJ, Voskuilen S, Oosterloo M, Kremer B. Treatment effects for dysphagia in Parkinson’s disease: A systematic review. Parkinsonism Relat Disord 2014;20:800-7.  Back to cited text no. 37
    
38.
Ward EC, Sharma S, Burns C, Theodoros D, Russell T. Validity of conducting clinical dysphagia assessments for patients with normal to mild cognitive impairment via telerehabilitation. Dysphagia 2012;27:460-72.  Back to cited text no. 38
    
39.
Kim SD, Allen NE, Canning CG, Fung VSC. Postural instability in patients with Parkinson’s disease. Epidemiology, pathophysiology and management. CNS Drugs 2013;27:97-112.  Back to cited text no. 39
    
40.
Dockx K, Bekkers EM, Van den Bergh V, Ginis P, Rochester L, Hausdorff JM, et al. Virtual reality for rehabilitation in Parkinson’s disease. Cochrane Database Syst Rev 2016;12:CD010760.  Back to cited text no. 40
    
41.
Ivkovic V, Fisher S, Paloski WH. Smartphone-based tactile cueing improves motor performance in Parkinson’s disease. Parkinsonism Relat Disord 2016;22:42-7.  Back to cited text no. 41
    



 
 
    Tables

  [Table 1], [Table 2], [Table 3]



 

Top
Print this article  Email this article

    

 
   Search
 
  
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Article in PDF (331 KB)
    Citation Manager
    Access Statistics
    Reader Comments
    Email Alert *
    Add to My List *
* Registration required (free)  


    Abstract
     Introduction
   The COVID-19 Cri...
   Teleneurorehabil...
   Why is TNR An Id...
   Specific Benefit...
     Scope and Directions
     Conclusions
    References
    Article Tables

 Article Access Statistics
    Viewed2710    
    Printed18    
    Emailed0    
    PDF Downloaded52    
    Comments [Add]    

Recommend this journal